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Complex dynamical states in binary mixture convection with weak negative Soret coupling

Arantxa Alonso,* Oriol Batiste, Alvaro Meseguer, and Isabel Mercader
Departament de Fisica Aplicada, Universitat Politecnica de Catalunya, Modul B4, 08034 Barcelona, Spain
(Received 24 July 2006; published 27 February 2007)

Binary convection in large-aspect-ratio annular containers heated from below is studied numerically for a

water-ethanol mixture. High-resolution numerical tools based on spectral methods are used to solve the hy-
drodynamic equations in the two-dimensional approximation. The weakly nonlinear states arising very close to
the onset of convection, the strongly nonlinear bursts of amplitude that precede the small-amplitude states, and
the dispersive chaotic states encountered further above onset in experiments for mixtures with a weak negative
Soret coupling are analyzed in detail in extended domains of aspect ratio 80. Steady localized states surrounded
either by quiescent fluid or by small-amplitude waves are also obtained, and the role they play in the dynamics

is elucidated.
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I. INTRODUCTION

Thermal convection in a binary fluid layer heated from
below is a system that exhibits a great variety of pattern-
forming phenomena when driven away from equilibrium [1].
Compared to convection in a pure fluid the spatiotemporal
properties of the flow patterns are more complex, due to the
extra degree of freedom associated with the concentration
field. In binary mixtures the temperature and concentration
fields are coupled through the Soret effect. The separation
ratio of the mixture S is the nondimensional parameter that
describes the extent to which buoyancy is modified by the
Soret effect. Of special interest is the dynamics arising in
S <0 binary mixtures. For such mixtures, the onset of con-
vection takes place via a subcritical Hopf bifurcation once
the Rayleigh number R, which is proportional to the tem-
perature difference across the layer, exceeds a critical value
R.. The bifurcation gives rise to oscillatory patterns. The
final selected nonlinear state depends on the parameters of
the mixture and can take the form of (i) extended spatially
uniform traveling waves, standing waves, or steady rolls, (ii)
several types of localized states, and (iii) highly irregular
states, which exhibit spatiotemporal chaotic motions. Al-
though much work has been done on this system, there are
still some points that remain to be clarified. To the authors’
knowledge, a study of states exhibiting a complex spatiotem-
poral dynamics near the onset of convection in binary mix-
tures by means of direct numerical simulation (DNS) of the
full Navier-Stokes equations is still lacking. Concerning the
localized states, while localized traveling wave convection
has been studied extensively for some time, localized station-
ary convection in the context of binary mixtures has been
obtained numerically very recently [2] (such states have been
named convectons) and has only been reported in one experi-
ment [3], although surrounding waves were also present in
that case.

In order to achieve translation-invariant systems that can
support uniform traveling waves, experiments are usually
performed on long, narrow annular cells. For mixtures with
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negative values of the separation ratio, different behaviors
have been observed depending on the actual strength of S. A
series of experiments using mixtures with separation ratio of
around S=-0.02 and cells of aspect ratio of about 80 [3-5]
show that, as the stress parameter e=(R—R_)/R, is increased
through a narrow range of supercritical values (¢ <0.02), the
system evolves through a series of complex spatiotemporal
states. After some linear and nonlinear onset transients in the
form of unidirectional traveling wave packets, the first per-
sistent dynamical states observed very close to the onset of
convection consist of weakly nonlinear oppositely propagat-
ing waves. Further above onset, more complex dynamical
states dominated by strong nonlinear dispersion are encoun-
tered. In the so-called dispersive-chaotic regime, which is
characteristic of mixtures with a weak negative Soret cou-
pling, spatially localized regions of traveling waves repeti-
tively form and collapse in an abrupt way leading to an er-
ratic dynamics. In addition, the system can also evolve from
this erratic state into a regime in which bursts of traveling
waves coexist with a region of steady convective rolls. Fi-
nally, above a certain value of the control parameter the sys-
tem settles in a pattern of nonlinear spatially uniform steady
rolls which fill the cell. This diversity of states arising in
large-aspect-ratio annular domains for mixtures with weak
negative Soret coupling will be analyzed numerically in this
paper.

The traveling wave burst and collapse process dominated
by strong nonlinear dispersion has also been studied experi-
mentally in long rectangular cells of aspect ratio between
20.0 and 40.6 [6]. Again, a sequence of very different pat-
terns is observed in the immediate vicinity of the onset
(£¢=<0.03). A small-amplitude counterpropagating wave state
is followed by a blinking traveling wave state when the left-
right symmetry of the pattern is broken as ¢ is increased. In
such states the amplitude of the traveling waves becomes
spatially and temporally modulated, with a periodic modula-
tion in short containers [7,8] and characterized by a random
repetitive evolution and collapse of traveling wave bursts in
longer cells [6,8]. In rectangular containers the role of the
lateral walls needs to be considered, since reflections of the
wave trains take place on them.

With the aim of understanding the rich dynamics encoun-
tered in experimental observations, several studies have been
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devoted to modeling the observed dynamics by using ampli-
tude equations, usually derived after symmetry consider-
ations and multiscale analysis. In the case of binary convec-
tion, the cubic complex Ginzburg-Landau equation (CGLE),
which was first applied to pattern-forming systems in [9], is
derived directly from the Navier-Stokes equations and de-
scribes the convective amplification and nonlinear evolution
of a traveling wave. The coefficients of this equation for
some fluids typically used in experiments were computed in
[10,11]. In the limit of small amplitude and very close to the
onset, the linear and nonlinear behavior of unidirectional
traveling wave states was accurately fitted to the predictions
of the CGLE [3].

The modulations of the waves on a slow time and space
scale for a Hopf bifurcation are described by two CGLEs for
the complex amplitudes of the right and left traveling waves,
which include a cubic cross term in both equations that takes
into account the stabilizing nonlinear interaction between op-
positely propagating traveling waves [12,13]. Recently [14],
a nonparametric nonlinear estimation approach was followed
to fit these amplitude equations to the data corresponding to
the counterpropagating regime in the experiment in the an-
nular container [3] and the coefficient of the term that de-
scribes the interaction between the two oppositely propagat-
ing waves was determined.

Another effect that numerical simulations of the Navier-
Stokes equations showed to be relevant in binary convection
is the influence of the convective concentration field on the
buoyancy forces and, in turn, on the growth and propagation
of the traveling waves (TWs) [15,16]. Riecke [17,18] derived
an additional equation governing the evolution of the ampli-
tude of a mean large-scale concentration field. This equation
takes into account the slow dynamics of the concentration
field caused by the small value of the Lewis number, which
measures the ratio of molecular to thermal diffusion. The
extended set of coupled CGLEs accounts for the slow drift
velocity and the robust occurrence of localized traveling
waves, and has been used in several works to model some
aspects of the dynamics of such waves [19-21].

The first time that an amplitude equation was reported to
exhibit dispersive chaos was in 1983 in the work of Brether-
ton and Spiegel [22]. They showed that the CGLE can ex-
hibit erratic behavior in the limit of very large dispersion,
and they found the decay of the pulses to be slower than
exponential and generated by an effective decrease of € in-
duced by the large nonlinear dispersivity of the system. Ka-
plan et al. [6] noticed that the mechanism proposed by
Bretherton and Spiegel could only work for the narrowest
pulses, since for initially wider pulses the bursting behavior
is strongly nonlinear. They generalized the model by retain-
ing the real part of the nonlinear term in the CGLE, and
showed that this term plays an important role on the forma-
tion of pulses, since it causes the high-amplitude bursting
behavior, that is, the self-focusing of the pulse. In this way
they could describe the main stages in the evolution of a
burst (a linear exponential amplitude growth, a faster than
exponential growth due to the destabilizing effect of the real
nonlinear term, and a collapse caused by compression of the
pulse from the sides), and showed large nonlinear dispersion
to be crucial only in the collapse process. Schopf and Kramer
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[23] had also analyzed analytically the CGLE, retaining the
destabilizing cubic term. They obtained chaotic states and
explored their existence over a wide range of values of the
coefficients relevant to binary convection, and attributed the
boundedness of such states to the competition between dis-
persion and nonlinear frequency renormalization.

As a last remark concerning the use of CGLE to model
binary convection, it is worth mentioning that since convec-
tion is triggered in the system by a subcritical bifurcation
higher-order nonlinear terms should be included in the
CGLE model (see [24] for a review). Kolodner et al. [25,26]
were able to stabilize states of unidirectional TWs on the
unstable branch of the subcritical bifurcation and succeeded
in measuring the nonlinear coefficients of the quintic CGLE.
Nevertheless, the strong nonlinear dispersion causes solu-
tions to be bounded even without a saturating quintic term,
and Kaplan er al. [6] showed that the nature of bursting
behavior in dispersive chaos is not affected by the addition of
higher-order terms.

Although the CGLE models help to identify the essential
mechanisms, their range of validity is limited (e.g., a limit
for the applicability of small-amplitude expansions to travel-
ing waves arising in binary fluid convection was established
in the work of [27]), and they do not reproduce all the as-
pects of the dynamics in a quantitative way. It is therefore
necessary to carry out numerical computations of the full
nonlinear convection equations to have a reliable analysis.
The main difficulty in simulating this system numerically
using the Navier-Stokes equations is the large size of the
annular containers used in experiments. Despite the simpli-
fication due to the fact that the patterns arising in narrow
containers are essentially two dimensional and can be accu-
rately described neglecting the variations along the roll axis,
the large size of the containers, whose aspect ratio can be of
order 80, requires a large spatial resolution to resolve the
boundary layers of the concentration field.

Most of the existing numerical works consider a single
pair of rolls, so they model the dynamics of spatially uniform
traveling waves and stationary states. This is the case of the
extensive numerical work of Barten et al. [28], which studies
in detail the branches of traveling waves and steady states for
different values of the separation ratio. The system they con-
sider is a two-dimensional cell such that only a single wave-
length fits in the domain. In this way, the authors have ob-
tained the bifurcation diagrams of the uniform traveling
waves and stationary states and have located the transition
between them.

The numerical works devoted to obtaining nonuniform
solutions are less abundant. On one hand, Barten and co-
workers (see, for instance, [29]) developed a finite-difference
code to model binary convection in an extended container.
Among other works, they analyzed the dynamics of localized
traveling waves and of traveling wave fronts [15,30-32]. On
the other hand, spectral methods were used by Batiste et al.
to study the dynamics in large-aspect-ratio rectangular con-
tainers [33] or to compute the Eckhaus instability of travel-
ing waves in annular cells [34]. Nevertheless, dispersive cha-
otic states have not been previously obtained by DNS of the
full convection equations.

The purpose of this paper is to obtain and analyze numeri-
cally the complex low-amplitude convection arising in large-
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aspect-ratio narrow annular containers for mixtures with
small negative Soret coupling, extending the preliminary re-
sults presented in [35]. With that aim, we use accurate nu-
merical tools based on spectral methods that enable us to
compute the arising nonlinear patterns. We wish to compare
our results with experimental observations, so we take as
reference parameter values those used in experiments [3,4].
Thus, we present results for an S=—0.021 water-ethanol mix-
ture filling a periodic rectangular domain of aspect ratio
I'=80 heated from below. The results we obtain are repre-
sentative of the rich dynamics observed in binary mixtures
with §>-0.04 in sufficiently long cells for Rayleigh num-
bers slightly above the threshold of convection.

The paper is organized as follows. In the next section we
describe the numerical tools we have used. In the following
section we discuss the properties of the different convection
regimes we have identified in our simulations: small-
amplitude time-dependent states, dispersive-chaotic solu-
tions, and stationary localized states. Finally, the conclusions
of the work are presented.

II. FORMULATION OF THE PROBLEM
AND NUMERICAL APPROACH

We consider Boussinesq binary-fluid convection in a nar-
row annular cell in the presence of a vertical gravitational
field g=—gé.. A vertical temperature gradient is imposed by
fixing a temperature difference AT between the horizontal
plates, with the temperature at the bottom being higher than
at the top. We are interested in modeling experiments in cells
with cross section width of the same order as the height d
and mean circumference L much larger than d. In such sys-
tems convection settles in the form of straight rolls with the
axis in the radial direction, the dynamics being essentially
two dimensional. Ignoring variations along the roll axes,
we use a simplified geometry consisting of a two-
dimensional domain (x,z) €[0,L]X[0,d], with the aspect
ratio I" defined as I'=L/d much greater than 1. Although the
two-dimensional (2D) approximation may not seem to be
justified in the case of the narrow cells used in the experi-
ments we aim to model, the agreement of the numerical re-
sults with the experiments supports this assumption. The fi-
nite width of the cell is expected to alter the location of the
bifurcations, but not to affect the dynamics substantially. A
3D linear stability analysis of the conduction state [36] re-
vealed differences of 13% for the critical Rayleigh number
obtained with the 2D and 3D codes for a cell of width twice
its height; these differences were only slightly reduced to 6%
when a parabolic Poiseuille profile was assumed in the span-
wise direction.

The 2D system admits the following basic conductive
state with constant gradients of temperature and concentra-
tion:

u.=0, (1)

TC:TO—AT(E—1>, (2)
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1
C.=Cy+Cy(1 —CO)STAT(EZ—E), (3)

where u=(u,w) is the velocity field; T and C are the fields of
temperature and concentration of the denser component, re-
spectively; T, and C, are their mean values, and Sy is the
Soret coefficient.

The dynamics of the system is governed by the continuity
equation, the Navier-Stokes equations, and the energy and
mass conservation equations. In their nondimensional form,
scaling length with the height of the layer d, time with the
vertical thermal diffusion time d?/k, x being the thermal
diffusivity, and temperature with AT, the equations explicitly
read

V.u=0, (4)
du+(u-Viu=-Vp+oViu+Ro[(1+5)0 +Syle,, (5)
30 +u-V)®=w+V?0, (6)

g+ u-V)p==V20 + 7V27. (7)

Here, ® denotes the departure of the temperature from its
conduction profile, O=(T-T.)/AT, and #n=—(C-C,)/
[Co(1=Cy)S;AT]-0. The dimensionless parameters in the
above equations are the Rayleigh number R, the Prandtl
number o, the Lewis number 7, and the separation ratio S,
defined as
aATgd® v
R=—"", o=-—

D
5 T=", S= C()(l —Co)EST,
KV K K a

where a and (8 are the thermal and concentration expansion
coefficients, v is the kinematic viscosity, and D is the mass
diffusivity.

The boundary conditions are taken to be periodic in x
with period I". No slip, fixed temperature, and no mass flux
at the top and bottom plates are considered

u=0=4.7=0 onz=0,1. (8)

As a measure of the heat transport by convection, we use
the Nusselt number Nu, defined as the ratio of heat flux
through the top plate to that of the corresponding conductive
solution. It has the following expression:

x=I
Nu=1 —F_IJ 3.0(z=1)dx.
x=0

Most of the calculations carried out in this paper are
aimed at obtaining time-dependent solutions and they have
been computed with a time-evolution code. To integrate the
equations in time, we have used the second-order time-
splitting algorithm proposed in [37], combined with a pseu-
dospectral discretization in space (Galerkin Fourier in x and
Chebyshev-collocation in z). The Helmholtz and the Poisson
equations resulting from the time splitting are solved by us-
ing a diagonalization technique [38]. The authors have suc-
cessfully used this algorithm previously to study binary con-
vection in large-aspect-ratio rectangular containers [33].
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FIG. 1. (a) Bifurcation diagram (Nu —1 versus Rayleigh num-
ber) showing the stationary (S) and traveling wave (TW) branches
of solutions of wave number k=7 for an §=-0.021,0=6.22,7
=0.009 binary mixture. The critical Rayleigh numbers at the onset
of convection R, at the saddle-node bifurcations in the TW branch
R™ and in the stationary branch R}, and at the parity-breaking
bifurcation of the stationary solutions where the traveling waves
disappear R” are indicated in the plot. (b) Bifurcation diagram in-
cluding the subharmonic instabilities in the TW branch (the open
and solid circles indicate loss and gain of stability, respectively, in
the subharmonic bifurcations), the region where dispersive chaotic
states are observed (solid squares), and the region of localized con-
vection (two odd and even parity snaking branches of steady local-
ized convection). The straight dashed lines delimit the part of the
bifurcation diagram depicted in (a), the arrows indicate the small-
amplitude and dispersive chaotic states shown in the paper, the solid
triangle corresponds to the stationary state reached in Fig. 3, and the
solid diamonds show the location of the two localized states de-
picted in Fig. 10.

In addition, to calculate the steady solutions and the spa-
tially uniform traveling waves, both stable and unstable, in
an efficient way we have adapted a pseudospectral first-order
time-stepping formulation to apply Newton’s method
[39,40]. Finally, it is also possible to carry out an Eckhaus
stability analysis of these solutions using Floquet theory, as
we presented in a previous work [34]. We include in Fig. 1
the bifurcations that were identified in the branch of traveling
waves for the mixture we are studying in the present paper.
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III. RESULTS

In this section we discuss the dynamics arising in a water-
ethanol mixture with parameters S=-0.021, 0=6.22, and
7=0.009 filling a periodic container of horizontal aspect ratio
I'=80 when a vertical temperature gradient is applied. This
choice of parameters is motivated by the experiment of
Kolodner et al. [4]. For most of the computations done with
the time-evolution code we have used 32 collocation points
in the vertical direction z, 1000 points for the Fourier pseu-
dospectral evaluation in the horizontal direction x, and a time
step Ar=1072 in units of the vertical thermal diffusion time.
We have checked the validity of the resolution we were using
by increasing the horizontal resolution to 2000 for some so-
lutions.

A. Bifurcation properties of spatially uniform solutions

In large-aspect-ratio annular containers, spatially uniform
solutions in the form of traveling waves and stationary con-
vection can be selected by the system. These solutions con-
sist of pairs of rolls with their axis oriented perpendicular to
the long sidewalls. The number of pairs of rolls of the struc-
ture adapts itself to the size of the container, and for the
I'=80 cell we are considering, the critical wave number of
the solutions is k=1, giving rise to solutions formed by
n=40 pairs of rolls. The bifurcation diagram in Fig. 1(a)
shows the branches of spatially uniform solutions for an
§=-0.021 mixture computed with k=. For sufficiently
negative values of the separation ratio, the primary instability
of the conduction state is oscillatory. This instability gives
rise to a branch of traveling waves that bifurcates subcriti-
cally from the conduction state for R.=1760.81. These TWs,
which can travel either to the right or to the left, are unstable
at the onset of convection and typically acquire stability in a
secondary saddle-node bifurcation located at R.Y'=1743.69.
When the Rayleigh number is increased from the saddle-
node point, the TW branch disappears for R"=1746.96 in a
parity-breaking bifurcation of steady solutions, to which sta-
bility is transferred. The phase velocity of the TW decreases
monotonically from its Hopf value at the onset of convection
R, to zero at the bifurcation point that gives rise to the stable
stationary states R". As can be seen in the diagram, there is
also a saddle-node bifurcation point in the branch of station-
ary solutions, which is located at R, =1743.35.

Sideband instabilities (instabilities that modify the spatial
periodicity of the basic solution) are known to play an im-
portant role in large-aspect-ratio containers. To find out
whether the bifurcation diagram in Fig. 1(a) is modified or
not when Eckhaus instabilities are considered, we analyzed
in a previous work the stability of the traveling waves with
respect to subharmonic disturbances [34,35]. The Eckhaus
bifurcations that were identified are depicted in the TW
branch in Fig. 1(b). The first Eckhaus instability occurs
nearly at the critical point, and is followed by two additional
destabilizing bifurcations (open circles). As can be seen in
the figure, the subsequent stabilizing Eckhaus bifurcations
(solid circles) take place in the upper part of the TW branch,
which means that the uniform TW solution does not gain
stability at the saddle-node point. Indeed, the last stabilizing
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FIG. 2. (Color online) R=1761 (¢=0.108 X 1073). (a) Time series (Nusselt number and 7=40 Fourier mode of temperature versus time),
(b) space-time plot of midplane temperature, (c) bar charts showing the Fourier spectra in the x direction of temperature and concentration
for the solution at +=3000, and (d) contour plots of the concentration and temperature fields at the same time-instant (while ® shows
deviations from temperature in the conduction state, C always includes the linear concentration profile). The space-time plot shows the
small-amplitude modulated TW that forms after the initial burst of amplitude; the modulation travels in the same direction as the TW. The
time interval of the space-time plot is indicated on the time-series diagram with vertical dashed lines.

Eckhaus bifurcation takes place very close to the region of
transition from traveling wave to steady convection, causing
the region of stability of the traveling waves to be extremely
small.

The bifurcation diagram in Fig. 1(b) also includes the
region where stable dispersive-chaotic states (solid squares)
and localized states are encountered. For the small-amplitude
time-dependent solutions the Nusselt number has been aver-
aged in time. The two intertwined snaking branches of local-
ized solutions, computed with the continuation code, corre-
spond to odd and even parity stationary solutions. The
stability of the these branches has not been analyzed, so in
this case the use of solid lines does not indicate that solutions
are stable all along the branches. Both the time-dependent
states and the localized stationary states will be discussed in
detail in the following sections. For Rayleigh numbers above
R=1785 the system always evolves to the spatially extended
stationary nonlinear solution.

B. Low-amplitude time-dependent states

For slightly supercritical Rayleigh numbers, a convective
regime, completely different from the spatially uniform TW

and stationary solutions, but consistent with experimental
observations, is identified for mixtures with a separation ratio
value close to zero. Our simulations show that, depending on
the initial conditions, the system remains in long-lived very
small-amplitude states instead of making a transition to a
large-amplitude stable state, a uniform n=40 stationary state
in the case of an §=-0.021 mixture in a ['=80 container.
Such small-amplitude states are never observed for subcriti-
cal values of the Rayleigh number (R<R,).

The first regime we obtain, extremely close to the onset of
convection and starting our simulations from small noise, is
a state of unidirectional modulated traveling waves, which is
preceded by a burst of convection amplitude. The structure
of this state can be visualized in Fig. 2 for R=1761 (e
=0.108 X 107%). The figure includes two time series showing
the evolution of the Nusselt number and the n=40 tempera-
ture mode, the space-time plot showing the variation with
time of temperature in the midplane of the cell, the tempera-
ture and concentration bar charts showing the contribution of
each Fourier mode to the solution at r/=3000, and the contour
plots of the temperature and concentration fields also at ¢
=3000. The system remains a long time in a very small-
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FIG. 3. (Color online) R=1762 (¢=0.676 X 107%). (a) Time series (Nusselt number and n=40 Fourier mode of temperature versus time),
(b) space-time plot of midplane temperature, and (c) contour plots of the concentration and temperature fields for the solution at r=3000.
Three stages can be distinguished in the evolution of the system: an initial burst of convection amplitude, a regime of unidirectional
modulated traveling waves, and a transition to stable uniform stationary convection. The space-time plot shows the transition to stationary

convection.

amplitude state consisting of a slightly modulated left-
traveling wave in which the modulation travels in the same
direction as the traveling wave and at about the same veloc-
ity, as can be appreciated in the space-time plot. The spatial
Fourier spectrum of the solution a r=3000 shows that the
contribution of the n=39 Fourier mode at this early stage of
convection is of the same importance as that of the critical
n=40 mode, and that the contribution of the n=38 and 41
Fourier modes is also relevant. Since we are very close to the
onset of convection, we can estimate the phase and group
velocity from the linear stability analysis of the conduction
state [36]. We obtain the following critical Rayleigh numbers
and frequencies for the n=39,40,41 traveling waves
(k39=3.0631, kyy=3.1416, k41=3.2201): R39=1761.48, Ry,
=1760.82, R4;=1763.32 and w39=2.7413, w4=2.8084, wy,
=2.8771. The resulting phase and group velocity turn out to
be very similar, c20=w/k=0.89 and c,~Aw/Ak=0.86, in
agreement with the space-time plot.

However, this weakly nonlinear state turns out to be un-
stable. The amplitude of the unidirectional traveling wave
grows superexponentially and the system undergoes a transi-
tion to the fully nonlinear spatially uniform stationary solu-
tion with azimuthal wave number n=40. We can observe this
behavior in Fig. 3 (in this case the small-amplitude TW trav-
els in the opposite direction), for a slightly superior value of
the control parameter, R=1762 (£=0.676X1073). Again,
simulations show that a burst of convection amplitude pre-

cedes the regime of weakly modulated traveling waves. The
linear growth in the beginning gives rise to a burst of ampli-
tude, and the subsequent collapse leaves the system in the
small-amplitude unidirectional right travelling wave state. In
real time, for the parameters of the fluid used in [3], the
system remains in such state for about 40 h before evolving
to the large-amplitude stationary state.

The next dynamical regime attained by the system when
increasing further the Rayleigh number and taking as initial
condition for the simulation the small-amplitude modulated
TW state for R=1762 is the so-called counterpropagating
regime [3]. This state is represented in Fig. 4 for R=1763
(e=1.24%1073) and consists of two asymmetric wave pack-
ets propagating in opposite directions along the cell. The
temperature and concentration bar-charts of the solution at
t=15000 reveal an important contribution of the Fourier
modes in the range 37<n<42. The system persists in this
state; the duration of the time series shown in Fig. 4 is ex-
tremely long, corresponding to about 250 h for the param-
eters used in [3], and a transition to the stationary state has
not been observed. The stabilizing effect of the nonlinear
interaction between oppositely propagating traveling waves
is a well-known property that can be modeled by writing two
CGL equations for the amplitudes of the right and left trav-
eling waves [13]. In agreement with experimental observa-
tions, the amplitude of convection remains very small.

Remarkably, as in the previous cases, we can appreciate in
the time series of Fig. 4 that the system exhibits two bursts of
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FIG. 4. (Color online) R=1763 (=1.24x 1073). (a) Time series (Nusselt number and n=40 Fourier mode of temperature versus time),
(b) space-time plot of midplane temperature, (c) bar charts showing the Fourier spectra in the x direction of temperature and concentration
for the solution at r=15 000, and (d) contour plots of the concentration and temperature fields at the same time instant. After the two initial
bursts of convection amplitude the system settles in a small-amplitude counterpropagating regime; the interaction between the wave packets
traveling in opposite directions has a stabilizing effect on the system.

convection amplitude before the counterpropagating regime
sets in. An abrupt increase in the amplitude of convection
takes place in the system, which is followed by a sudden
collapse of convection.

To elucidate what happens during the bursting episodes, it
is worth analyzing in detail the spatiotemporal nature of the
solution during the bursts. To that end, we have included in
Fig. 5 and Fig. 6 the space-time diagram, the contour plots of
the concentration field in several time instants, and the cor-
responding time series in two cases: the burst of amplitude
observed for R=1762 and the second burst that takes place
for R=1763. The dynamics in both processes is quite spec-
tacular and, as will be shown, the developing patterns clearly
depart from a weakly nonlinear regime at some stages of the
evolution.

We begin by discussing the evolution of the system during
the burst of amplitude observed for R=1762, which can be
visualized in Fig. 5. At the beginning of the process, prior to
the burst of amplitude, a fast left traveling, nearly uniform
wave of small amplitude and wave number n=40 develops
(contour plot for r=150). As the amplitude of the wave
grows the traveling wave slows down, but this growth does
not take place homogeneously throughout the cell. At
t= 195, spatial nonuniformities in the solution can be clearly
appreciated in the contour plots of the concentration field,
and approximately at this time instant a spatiotemporal de-

fect located at x= 60 can be observed in the space-time plot
of temperature in Fig. 5(b). On the right hand side of the
defect, a spatially localized fast traveling pulse, which keeps
its amplitude constant, develops. On its left hand side, the
amplitude of convection begins to grow significantly and, as
the wave slows down, the large-amplitude convective region
progressively becomes confined in space. In addition, the
fast traveling pulse collides with it, and an abrupt collapse of
the structure takes place (1=220-230). The region of finite-
amplitude convection shrinks very fast and is replaced by
totally quiescent fluid (r=230). The system is left in a
slightly perturbed conduction state at the end of the process
(#=280).

The spatiotemporal evolution of the pattern during the
second burst that takes place for R=1763 can be seen in Fig.
6. Analogously to the previous case, a small-amplitude fast
n=40 left traveling wave begins to grow in the system trig-
gered by the oscillatory instability. This time the growth ap-
pears to be quite uniform and the dynamics one might expect
beforehand, after an inspection of this early stage of the evo-
lution of the pattern (until = 2040), would be a faster than
exponential growth bringing the system to the stable uniform
stationary solution, similar to that represented in Fig. 3 for
R=1762. Instead, spatial inhomogeneities develop again in
the pattern. The space-time plot of temperature reveals a de-
fect located in x=50 at t=2060, which separates a small-
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FIG. 5. (Color online) (a) Time series (Nusselt number and n=40 Fourier mode of temperature versus time), (b) space-time plot of
midplane temperature, and (c) contour plots of the concentration field in different time instants during the burst of amplitude for R=1762.

amplitude fast traveling pulse from a region of large-
amplitude slowly traveling convection. In this case, though,
the spatial extension of the pulse is very small and it is
damped very fast, leaving a void in the structure that expands
in both directions by slowly eroding the nearly stationary
large-amplitude structure. After the disappearance of the
pulse, the system is left in a state in which large-amplitude
stationary convection coexists with quiescent fluid. Such
states of localized steady convection resemble the stable
states that will be presented later. Since for the Rayleigh
number we are considering we are outside the region of ex-
istence of these states, the convection region gradually re-
duces its size and is replaced with totally quiescent fluid. The
system ends up in an almost conductive state from which the
counterpropagating regime will emerge.

Our results should be contrasted with the mechanisms
proposed by Kaplan er al. [6] for the spatiotemporal evolu-
tion of bursts of amplitude. Kaplan et al. distinguish between

initially wide and narrow pulses, and they propose two dif-
ferent mechanisms depending on the initial width of the
burst.

We believe that the spatiotemporal behavior during the
pulse depicted in Fig. 5 for the burst for R=1762 may follow
the nonlinear self-focusing mechanism they propose for ini-
tially wide pulses. They divide the evolution of these pulses
into three stages: a linear exponential amplitude growth, a
faster than exponential growth, and the collapse. During the
linear growth the pulse amplitude increases exponentially,
while during the nonlinear stage the amplitude growth is
followed by a fast narrowing of the pulse. The collapse is
initiated as a compression of the pulse at the edges, and
when the pulse becomes narrow enough the decay to small
amplitude takes place very rapidly, in what they call a self-
focusing scenario. According to them, the cubic CGLE can
account for this behavior, provided the real part of the non-
linear term is not neglected, since bursting occurs due to its
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destabilizing role, which is responsible for the faster than
exponential growth and leads to the formation of a singular-
ity in a finite time. Initially the pulse is quite uniform; as the
pulse evolves the largest amplitude gradients take place near
the pulse edges and produce wave number variations, while
the amplitude inside the pulse continues to grow faster than
exponentially. This produces the self-focusing of the pulse
and the collapse occurs due to compression of the pulse
caused by the strong nonlinear dispersion of the system.

In contrast, we think that the collapse process depicted in
Fig. 6 for the second burst taking place for R=1763 differs
from the mechanisms proposed in [6]. Instead of a fast col-
lapse of the pattern, the system reaches a localized stationary
state of a large number of rolls, eventually decaying to con-
duction by the gradual loss of all the pairs of rolls that make
up the pattern. Nonlinear dispersion is not relevant in the
destruction of convection; thus, neither the Bretherton-
Spiegel mechanism [22] nor the self-focusing mechanism

proposed by Kaplan et al. would be suitable for the descrip-
tion of this collapse process. In addition, it is worth empha-
sizing that previous works always talk about pulses of trav-
eling waves, while our simulation shows that in this case the
system reaches a state in which a pair of moving fronts sepa-
rates uniform steady convection from the conductive state.
Such states are reminiscent of the stable localized steady
states discovered in [2].

C. Dispersive chaotic states

A slight increase in the Rayleigh number produces a tran-
sition from the counterpropagating regime to the dispersive
chaos regime. In Fig. 7 we have included several time series
showing the variation of the Nusselt number [Fig. 7(a)] and
the n=40 temperature mode [Fig. 7(b)] for several values of
the Rayleigh number in the range 1765<R=<1775
(2.38X 103 <e=<8.01 X 1073), during the dispersive chaos
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different values of the Rayleigh number during the dispersive chaotic regime.

regime. These states have been obtained sequentially starting
the simulations from the previous dispersive chaotic state
(that is, the state obtained with the preceding Rayleigh num-
ber). As can be appreciated in the plot, the dynamics be-
comes erratic. The Nusselt number, which is a global vari-
able that gives an indication of the strength of convection in
the whole annulus, oscillates aperiodically. We observe that
the amplitude of convection of these states remains small
until quite suddenly a burst of convection amplitude takes
place in the system. This sequence of small-amplitude con-
vection followed by a burst and the subsequent collapse of
amplitude repeats irregularly. The frequency and intensity of
these bursts changes in each episode, and these two magni-
tudes increase as the Rayleigh number is increased. Whereas
for R=1765 only three relatively small-amplitude bursts are
recorded during the time interval 0<<t<<1000, roughly
ten larger-amplitude bursts take place in the system for
R=1775 during the same time interval. The intensity of the
bursts for 1770<R<1775 typically reaches a value of
Nu=0.01, which represents approximately 25% of the Nus-
selt number corresponding to the spatially uniform steady
solution (see bifurcation diagram in Fig. 1).

To visualize the spatiotemporal features of these chaotic
states, we include in Fig. 8 the space-time plots of tempera-
ture and the contour plots of concentration at #=1000 for

three values of the Rayleigh number during the dispersive
chaos regime: R=1769, 1772, and 1775. Spatially localized
traveling pulses of convection, of different length and dura-
tion, grow and decay around the cell. Regions of the cell
with large convection amplitude coexist with areas of nearly
quiescent fluid. This behavior can be observed, for instance,
for R=1769 at t=1000. The contour plots show the forma-
tion of a highly localized pulse on the left-hand side of the
cell, while on the right-hand side a region without convec-
tion develops. Such quiescent regions can also be observed
in the simulations for R=1769 in the range 1100<<¢r<<1140
on the right-hand side of the container, and for R=1772 in
the range 1080<r<<1120. Broader pulses can be observed,
for instance, for R=1775. As the Rayleigh number increases,
the variations of the structure in time are more rapid and the
dynamics becomes more erratic; the pulses appear more
densely in space. In addition, for high values of the control
parameter &, the pulses tend to appear at similar spatial lo-
cations, as happens for R=1775. This memory effect is due
to the combined facts that, on one hand, a large value of &
encourages the formation of pulses, and, on the other, the
time scale for the diffusion of concentration is large as a
result of the small Lewis number of the mixture.

We have also explored the influence of the size of the
container on the dynamics. Simulations of convection in a
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FIG. 8. (Color online) Space-time plots of midplane temperature and concentration contour plots of the solution at a r=1000 for three

values of the Rayleigh number during the dispersive chaotic regime: R=(a) 1769, (b) 1772, and (c) 1775.
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container of aspect ratio I'=60 for the same binary mixture
reveal a dynamics analogous to that of the I'=80 cell. The
dispersive chaos regime is thus observed in smaller aspect
ratio containers and shares the same features. Nonchaotic
small-amplitude states similar to those described previously
are also observed before the chaotic regime sets in, although
for the I'=60 cell we have been able to obtain much more
regular, nearly periodic, and quasiperiodic states. Finally, it
should be mentioned that in the case of a I'=40 container the
system did not reach the chaotic regime. For the trials we
have made using slightly supercritical Rayleigh numbers and
different initial conditions, the selected solution was always
the spatially uniform fully nonlinear stationary state. How-
ever, since we have not explored the parameter space ex-
haustively, we cannot totally exclude the possibility that the
system remains in small-amplitude states, although for the
I'=80 and 60 cells such states were reached very easily in
the simulations.

Our numerical results on the dispersive chaos regime
agree with the experimental observations in annular contain-
ers [3-5]. In addition, we have confirmed that the origin of
this regime is large nonlinear dispersion by doing some
simulations with smaller values of the separation ratio of the
mixture, S=-0.041,-0.061,-0.081,-0.101,-0.121, since
making S more negative is known to reduce nonlinear dis-
persion [5]. Taking as initial condition of the simulations the
chaotic solution for R=1770, and keeping constant the con-
trol parameter to a value of £=5X 1073 (for each value of §
we have computed the critical Rayleigh number with a linear
stability code), we observe a trend in the bursts to decrease
progressively in frequency and amplitude. At S=-0.101 a
dispersive chaotic state no longer persists and the system
selects a localized TW state.

We believe that the original mechanism proposed by
Bretherton and Spiegel [22] and confirmed by Kaplan er al.
[6] to describe the evolution of narrower pulses applies in
these numerical observations. In this mechanism, the growth
of these pulses is linear, so they follow a slower than expo-
nential growth, the decay is generated by the renormalization
of & due to the wavenumber variations, and the pulse is de-
stroyed before it can grow significantly. This scenario is re-
produced by neglecting the real part of the nonlinear term in
the CGLE and nonlinear dispersion is relevant during the
whole evolution of the pulse.

D. Localized convection

The dispersive chaos regime we have described in the
previous section is persistent; the system can remain indefi-
nitely in such states. As we have seen in the space-time plots,
after most of the bursts of amplitude, the system goes back to
a small-amplitude state. Nevertheless, in some occasions our
simulations show that the system makes a transition to a
large-amplitude nontraveling localized state, whose length
can vary. Depending on the Rayleigh number and the initial
conditions, the system will follow one of several paths. Ei-
ther it will remain in this localized state, or it will return to
the dispersive chaos state, or it will evolve to the spatially
uniform steady solution. For instance, the space-time plot for
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FIG. 9. Space-time plots of midplane temperature for R=1772
showing the formation of a stationary localized state out of the
dispersive chaotic state and its subsequent destruction bringing the
system back into the chaotic regime.

R=1772 included in Fig. 9, obtained by extending the simu-
lations of Fig. 8(b), shows the formation of a localized sta-
tionary structure out of the dispersive chaos regime and its
subsequent destruction.

The stable nontraveling localized states we have obtained
are represented in Fig. 10. Such states consist of a localized
region of large amplitude steady convection, which is either
surrounded by quiescent fluid [Fig. 10(a)] or embedded in a
background of small-amplitude waves [Fig. 10(b)]. In ex-
periments, only the stationary localized states sustained by
waves have been observed [3].

The localized state represented in Fig. 10(b) for R=1780
has emerged directly from a dispersive chaotic state and re-
sembles the localized states observed in the experimental
work of [3]. The authors of [3] refer to these states as the
coexistence regime, since they observe regions occupied by
almost perfectly steady rolls surrounded by TWs whose am-
plitude varies regularly in time. Nevertheless, while the am-
plitude of the waves remains small in our simulations, it
reaches large values in the experimental observations.

The stationary localized state included in Fig. 10(a) for
R=1775 has been obtained by considering as initial solution
for the simulations the time-dependent localized state for
R=1780 and reducing the Rayleigh number progressively.
The length of the convection region is exactly the same as in
the solution for R=1780, but now the rest of the fluid is in a
perfect conducting state despite the uniform heating from
below. Such states have been obtained for the first time in
binary mixtures by Batiste and Knobloch in a very recent
numerical work considering *He-*He mixtures (mixtures
with a large negative Soret coupling) [2], and have been
named convectons. In our simulations, we find that the con-
vectons can be stable in the following range of Rayleigh
numbers: 1774<R=<1779. Below R=1774, the two fronts
that separate the steady convection region from the conduc-
tion part unpin and the convecton is destroyed by the pro-
gressive suppression of pairs of rolls; the system returns to
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FIG. 10. (Color online) Space-time plots of midplane temperature for (a) a stationary localized state (convecton) for R=1775 and (b) a
stationary localized state coexisting with small-amplitude waves for R=1780. The corresponding temperature and concentration contour
plots are depicted in (c) and (d).

(d)

the dispersive chaos state from which a new convecton may uniform stationary state. We have been able to compute these
arise. This process is illustrated in Fig. 11(a) for R=1771. snaking branches using the full Navier-Stokes equations, and
Above R=1779 the fronts begin to move apart until the cell ~ have included them in the bifurcation diagram in Fig. 1(b).
is filled with spatially uniform stationary convection, as can Each of the curves corresponds to convectons of either odd
be seen in Fig. 11(b) for R=1780. It is worth noticing that  or even parity. In each right turning point the convecton ac-
the stationary convecton is no longer stable for R=1780 [Fig. quires a pair of rolls; thus, the length of the convecton in-
11(b)], but it can remain stable provided waves appear in the  creases progressively and approaches the spatially uniform
conduction region [Fig. 10(b)]. Therefore, these surrounding  ¢6jution. The number of rolls of the localized solution in the
waves have. a stabilizing effect on the localized structure by piece of odd branch shown in the plot (the shorter one),
colliding with the convecton. We have been able to find con- . 4o from eight single rolls below the first saddle node to

vectons stabilized by waves up tO.R:1784; for Rayleigh 20 after the last saddle node. In the piece of even branch
numbers above R = 1785 stable localized states are not found . .
shown, the number of single rolls lies between seven and 31.

any more, and convection is always in the form of uniform . .
Y y These snaking branches are independent of the value of the

steady rolls. . . . . -
A striking feature of the convectons is the arbitrariness of aspect ratio of the cell in the region shown; the only variation
would be the actual value of the Nusselt number, which

their length. For a fixed value of the Rayleigh number there 5 ) o
would be scaled by a factor since its definition includes an

is multiplicity of stable localized states, each formed by a 8 > )
different number of convection rolls. A theoretical interpre- ~ 3VeTage Over the horizontal size of the container. Ho.wever,
the snaking branches connect the conduction state with the

tation of this behavior has been proposed recently by Burke - ) ) 1aUe :
and Knobloch [41] in the context of the Swift-Hohenberg  Spatially uniform stationary state, which is formed by a dif-

equation. They obtain branches of solutions for the convec- ferent number of rolls for each value of T', so the number of
tons that “snake” from the conduction state to the spatially ~ turning points must depend on the aspect ratio of the cell,
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FIG. 11. Space-time plots of midplane temperature showing (a)
the destruction of a stationary localized state by the progressive
erosion of pairs of rolls for R=1771, and (b) the transition from a
stationary localized state to spatially uniform stationary convection
due to the unpinning of the fronts for R=1780.

and some differences in the upper part of the branches are
expected to occur.

Although we have not computed the stability of the con-
vectons along the branches, the stable convectons we have
found using the time evolution code lie on portions of the
branch between a left-turning point and the next right-
turning point going up the snake. A detailed discussion of the
properties of the convectons in water-ethanol mixtures as
well as theoretical considerations about their existence, are
discussed in a different work [42].

IV. CONCLUSIONS

In this paper, we have presented results for direct numeri-
cal simulations of convection in binary fluids in large-aspect-
ratio containers. The periodic boundary conditions we have
considered in the horizontal direction are suitable for model-
ing the annular cells frequently used in experiments. We

PHYSICAL REVIEW E 75, 026310 (2007)

have focused on binary mixtures with negative values of the
separation ratio S, for which the primary bifurcation is sub-
critical and oscillatory, and with weak Soret coupling (S
close to zero), so that nonlinear dispersion is important. For
this type of mixture, complex time-dependent small-
amplitude states and chaotic states, called dispersive chaos,
arise near the onset of convection. Our numerical study using
the full convection equations completes the previous works
on such states: on one hand, the experimental works, per-
formed on annular cells [3-5] and on rectangular cells [6],
and on the other, the numerical works, in which CGLE mod-
els were considered [3,6,22].

In general terms, our numerical simulations agree with
experimental observations, but there are also some discrep-
ancies, mainly concerning (i) the frequency and shape of the
bursts of convection amplitude observed before the disper-
sive chaos regime is reached and (ii) the localized stationary
states, which were not observed in experiments unless sur-
rounding waves were present.

First, as in experiments, we obtain that for slightly super-
critical values of the control parameter the system can re-
main in small-amplitude states instead of making a transition
to the stable spatially uniform fully nonlinear steady state.
While unidirectional small-amplitude wave train states al-
ways turn out to be unstable, we have found persistent states
formed by wave trains traveling in opposite directions.

Second, we observe numerically that the previous weakly
nonlinear states are preceded by one or two bursts of con-
vection amplitude. However, in the experimental observa-
tions reported in [3], the initial large amplitude burst is fol-
lowed by a series of smaller-amplitude double-humped
bursts that repeat aperiodically before the counterpropagat-
ing regime is reached. Unlike in these observations, we only
obtain one or two of these bursts at the beginning of our
simulations, and we never observe the repetition of the
bursts. We think that the nature of the bursts we obtain is
similar to that of the first large-amplitude burst observed in
the experimental runs. The nonlinear frequency renormaliza-
tion after the increase of the control parameter provokes the
initial nearly uniform TW to grow to a very large amplitude,
but the mutual reinforcement of amplitude and wave number
spatial gradients would cause the collapse, after which the
system ends up in a very small-amplitude state. Once in this
weakly nonlinear regime, and provided that we do not in-
crease the control parameter, subsequent bursts are much
more rarely triggered than in experiments. This can be ex-
plained by the absence in our numerical simulations of the
nonuniformities that might be present in any experimental
setup.

Finally, with the computation of the snaking branches of
localized stationary states we have provided the key piece
that was missing to understand completely the extensive ex-
perimental observations in [3]. Unlike the weakly nonlinear
states, the highly nonlinear bursts of amplitude and the dis-
persive chaos regime, the localized stationary states sus-
tained by waves they report are not related to nonlinear dis-
persion, since they can be found in *He-*He mixtures, which
have a strong negative Soret coupling [2]. For the water-
ethanol mixture we are considering, the narrow range of
Rayleigh numbers for which these branches of steady local-
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ized convection exist overlaps slightly the region of exis-
tence of the dispersive chaos regime, making transitions be-
tween such different regimes possible. We forecast that it
should be possible to obtain experimentally stationary local-
ized states of arbitrary length, although not reported in [3].

PHYSICAL REVIEW E 75, 026310 (2007)
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